Introduction to Machine Learning Applications

 Spring 2021 Lecture-10Lydia Manikonda

manikl@rpi.edu

Today's agenda

- Accuracy metrics
- Features and Dimensionality Reduction

Announcements

- Homework-4 due on March $4^{\text {th }}$ 2021, 11:59 pm ET via LMS
- We will look at how to compute precision and recall values in a dynamic fashion.

Accuracy Metrics

		Actual Class	
	Class = 1	Class = 0	
Predicted Class	Class = 1	f_{11}	f_{10}
	Class = 0	f_{01}	f_{00}

- f_{11} - True Positive
- f_{10} - False Positive - Type I error
- f_{01} - False Negative - Type II error
- f_{00} - True Negative

Precision: How many selected items are relevant?

Recall: How many relevant items are selected?

Precision

How many selected items are relevant?

$$
\text { Precision }=\frac{\mid\{\text { relevant documents }\} \cap\{\text { retrieved documents }\} \mid}{\mid\{\text { retrieved documents }\} \mid}
$$

$$
\text { Precision }=\frac{f_{11}}{\left(f_{10}+f_{11}\right)}
$$

Recall

How many relevant items are selected?

$$
\text { Recall }=\frac{\mid\{\text { relevant documents }\} \cap\{\text { retrieved documents }\} \mid}{\mid\{\text { relevant documents }\} \mid}
$$

$$
\text { Recall }=\frac{f_{11}}{\left(f_{01}+f_{11}\right)}
$$

F-measure

Better measure that considers the harmonic mean of precision and recall

$$
\begin{gathered}
f-\text { measure }=\frac{2 *(\text { precision } * \text { recall })}{(\text { precision }+ \text { recall })} \\
f 1 \text { score }=\frac{2 * \text { precision } * \text { recall }}{(\text { precision }+ \text { recall })}
\end{gathered}
$$

Compute precision, recall and f-measure

tp $=8$
$\mathrm{fp}=4$
$\mathrm{fn}=2$
tn $=6$

		Actual Class	
	True	False	
Predicted class	True	8	4
	False	2	6

Precision $=\mathrm{tp} /(\mathrm{tp}+\mathrm{fp})=8 /(8+4)=8 / 12$
Recall $=8 /(8+2)=8 / 10$
F-score $=(2 *$ precision $*$ recall $) /($ precision+recall $)=(2 * 8 * 8 / 120) /(8 / 10+$ $8 / 12$) $=$

Plot a precision recall graph

- True_labels $=\left[\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{4}, \ldots, \mathrm{t}_{\mathrm{k}}\right]$
- Pred_labels $=\left[p_{1}, p_{2}, p_{3}, p_{4}, \ldots, p_{k}\right]$
- At each point we compute the precision-recall values and dynamically compute them as we keep looking at all the labels consequently.
- Y_true $=[1,0,0,1,1]$
- Y_false = [1, 1, 1, 0, 0]
- $\mathrm{i}=2$: precision, recall values Actual = [1, 0, 0]
Pred $=[1,1,1]$
$\mathrm{Tp}=1$
tn=0
$\mathrm{Fp}=2$
Fn=0
Precision $=1 / 3=0.334$
Recall $=1 / 1=1$
- Y_true $=[1,0,1,0,1]$
- Y_false $=[0,1,0,1,1]$
- $\mathrm{i}=2$: precision, recall values

Actual $=[1,0,1]$
Pred $=[0,1,0]$
Tp=0
tn=0
$\mathrm{Fp}=1$
$\mathrm{Fn}=2$
Precision $=0 / 1=0$
Recall $=0 / 2=0$

Sensitivity

Also considered as the True positive rate or equivalent to recall

Sensitivity $=\frac{\mid\{\text { relevant documents }\} \cap\{\text { retrieved documents }\} \mid}{\mid\{\text { relevant documents }\} \mid}$

Specificity

Also known as True Negative Rate (actual negatives that are correctly identified)

$$
\text { Specificity }=\frac{\text { True Negative }}{(\text { True Negative }+ \text { False Positive })}
$$

$$
\text { Specificity }=\frac{f_{00}}{\left(f_{00}+f_{10}\right)}
$$

ROC curve

- Receiver operating characteristic curve
- Created by plotting True-positive rate vs False positive rate

$$
\begin{aligned}
& \text { FalsePositiveRate }=\frac{\text { False Positive }}{(\text { True Negative }+ \text { False Positive })} \\
& \text { TruePositiveRate }=\frac{\text { True Positive }}{(\text { False Negative }+ \text { True Positive })}
\end{aligned}
$$

ROC curve - Example

Class Exercises

- Compute
- Accuracy
- Precision,
- Recall,
- f-measure,
- Specificity
- False positive ratetn = 3

		Actual Class	
		Cat (true)	~Cat (false)
Predicted Class	Cat (true)	5	2
	\sim Cat (false)	3	3

$$
\text { Accuracy }=(5+3) / 13 \quad \text { Precision }=(5 / 5+2)
$$

Recall $=5 /(5+3)$

> F-measure =
> $2 * p * r /(p+r)$

$$
\begin{aligned}
\begin{aligned}
A c c u r a c y & = \\
\text { Precision } & =\frac{T P+T N}{\# T \text { Total }}=\frac{5+3}{5+2+3+3}=\frac{8}{13} \\
\text { Recall } & =\frac{5}{5+2}=\frac{T P}{T P+F N}=\frac{5}{7}=71.53 \% \\
\text { score } & =\frac{2 \times P \text { re } \times \text { Rec }}{(\text { Pret }+ \text { Rec })}=\frac{2 \times \frac{5}{7} \times \frac{5}{8}}{\left(\frac{5}{7}+\frac{5}{8}\right)}= \\
& =62.5 \% \\
& \left.=\frac{25}{28}\right) /\left(5 \times\left[\frac{5}{56}\right]\right) \\
& =\frac{25}{28} * \frac{562}{8 \times+53}=\frac{2}{3}=66.7 \% \\
\text { Specificity } & =\frac{T N}{T N+F P}=\frac{3}{3+2}=\frac{3}{5}=60 \% \\
F P R & =\frac{F P}{F P+T N}=\frac{2}{2+3}=\frac{2}{5}=40 \%
\end{aligned}
\end{aligned}
$$

k-fold Cross-validation

- Resampling procedure to evaluate machine learning models on a given data sample.
- The parameter k refers to the number of groups that a given data sample is to be split into.
- If $\mathrm{k}=10$, it is 10 -fold cross-validation where the sample data is divided into 10 groups.

k-fold Cross-validation

> Shuffle the dataset (better)
> Split the dataset into k disjoint groups
$>$ For each unique group:
> Take the group as a hold out or test (validation) data set
> Take the remaining groups as a training data set
> Fit a model on the training set and evaluate it on the test set
> Record the evaluation score
$>$ Find the mean of all the sample of model evaluation scores

k-fold Cross-validation

[1, 2, 3, 4, 5, 6]

Fold1: [5, 3]
Fold2: [1, 6]
Fold3: [2,4]

Model1: Trained on Fold2 + Fold3, Tested on Fold1
Model2: Trained on Fold1 + Fold3, Tested on Fold2
Model3: Trained on Fold1 + Fold2, Tested on Fold3

Example

- Given a set of data points - \{a, b, c, d, e, f, g, h\}
- Perform 4-fold cross validation
- Explain it in your own terms - what are the folds and how do you use them?

Model Overfitting \& Underfitting

Underfitting: when model is too simple, both training and test errors are large
Overfitting: when model is too complex, training error is small but test error is large

How do we convert ground truth data and predictions to a confusion matrix?

- Notebook example
- Exercises in the notebook to follow..

Eigenvalues and Eigenvectors

- In the image on the right, when the image is transformed, red arrow changed the direction. But the blue arrow didn't - this is the eigenvector.
- Eigenvector does not change its direction.

Eigenvalues and Eigenvectors

- Eigenvectors are the characteristic vectors that are nonzero vectors.
- Eigenvalues are the scalar values or factors with which corresponding eigenvectors are scaled.
- But how do we compute them?

Computing eigenvalues and eigenvectors

- We multiply a matrix with a vector and get the same result when we multiply a scalar by that vector.

We start by finding eigenvalue.

$$
\left.\begin{array}{l}
A V=\lambda V \\
A V=\lambda I V \\
A V-\lambda I V=0 \\
|A-\lambda I| V=0
\end{array}\right\} \begin{aligned}
& \text { eigenvector correspondit } \\
& \text { to the eigenvalue } \lambda \text { is the non-zero }
\end{aligned}
$$

Example:
Computing eigenvalues and eigenvectors

We found eigenvalues.

Now compute corresponding eigenvectors

If $A=\left[\begin{array}{cc}-6 & 3 \\ 4 & 5\end{array}\right], \begin{aligned} & \text { compute eigenvalues and their } \\ & \text { Corresponding eigenvection. }\end{aligned}$

Start with: $|A-\lambda I|=0 \longrightarrow$ Finding the determinant

$$
\left|\left[\begin{array}{cc}
-6 & 3 \\
4 & 5
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right|=\left|\left[\begin{array}{cc}
-6-\lambda & 3-0 \\
4-0 & 5-\lambda
\end{array}\right]\right|=(1)
$$

$$
\begin{gathered}
\lambda^{2}+\lambda-42=0 \\
(\lambda+7)(\lambda-6)=0 \\
\lambda=-7 \text { or } 6
\end{gathered}
$$

Care 1: $\lambda=6: \quad A V=\lambda V$

$$
\left.\begin{array}{l}
{\left[\begin{array}{cc}
-6 & 3 \\
4 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=6\left[\begin{array}{l}
x \\
y
\end{array}\right](\text { Multiply })} \\
-6 x+3 y=6 x \\
4 x+5 y=6 y
\end{array}\right\}
$$

Case-1: eigenvalue=6

$$
\begin{aligned}
-12 x+3 y & =0 \\
4 x-y & =0 \\
\text { II } & \\
4 x & =y \text { or } y=4 x .
\end{aligned}
$$

So, eigenvector is any non-zero multiple of

$$
\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

$$
\begin{align*}
& \text { Case-2: } \lambda=-7: \quad A V=\lambda V \\
& \qquad\left[\begin{array}{rr}
-6 & 3 \\
4 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=(-7)\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& \text { Multiplying these matrices: } \\
& -6 x+3 y=-7 x \tag{1}
\end{align*}
$$

Case-2: eigenvalue=-7

$$
\begin{aligned}
& x+3 y=0 \\
& 4 x+12 y=0 \\
& x=-3 y \text { or } y=\left(-\frac{1}{3}\right) x \\
& {[-3} \\
& {[1] \rightarrow \text { Eigenvector is any non-zeno }} \\
& \text { multiple of this vector. }
\end{aligned}
$$

Lets case-2's
eigenvector and multiply with the original matrix

Replace care-2's eigenvector to multiply with the original matrix.

$$
\left[\begin{array}{cc}
-6 & 3 \\
4 & 5
\end{array}\right]\left[\begin{array}{c}
-3 \\
1
\end{array}\right]=\left[\begin{array}{l}
(-6)(-3)+(3)(1) \\
(4)(-3)+(5)(1)
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
18+3 \\
-12+5
\end{array}\right]=\left[\begin{array}{c}
21 \\
-7
\end{array}\right]
$$

Example-2: eigenvalues and eigenvectors

Matrix is:

$$
A=\left[\begin{array}{rr}
2 & 2 \\
5 & -1
\end{array}\right.
$$

Principal Component Analysis

- Step-1: Standardization
- Step-2: Compute covariance matrix
- Step-3: Compute the eigenvalues and eigenvectors of the covariance matrix
- Step-4: Sort the eigenvalues in a decreasing order
- Step-5: Choose the top-k eigenvectors which are the principal components - these will be the transformed feature vectors (reorient the data is the common approach)

