Introduction to Machine Learning Applications Spring 2021

Lecture-11

Lydia Manikonda

manikl@rpi.edu

Today's agenda

- Features and Dimensionality Reduction
- Regression

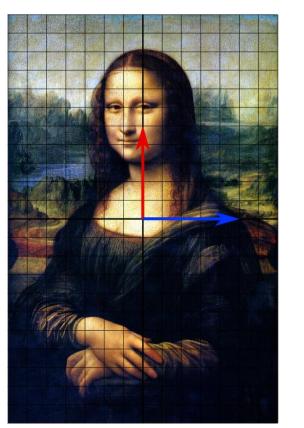
Announcements

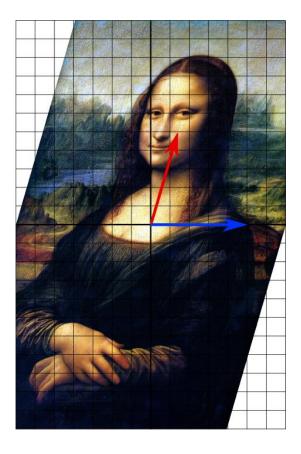
• Homework-4 due on March 4th 2021, 11:59 pm ET via LMS

Dimensionality Reduction

Eigenvalues and Eigenvectors

- In the image on the right, when the image is transformed, red arrow changed the direction. But the blue arrow didn't – this is the eigenvector.
- Eigenvector does not change its direction.





Picture credits: By TreyGreer62 - Image:Mona Lisa-restored.jpg, CC0, https://commons.wikimedia.org/w/index.php?curid=12768508

Eigenvalues and Eigenvectors

• Eigenvectors are the **characteristic vectors** that are nonzero vectors.

- Eigenvalues are the scalar values or **factors** with which corresponding eigenvectors are scaled.
- But how do we compute them?

Computing eigenvalues and eigenvectors

• We multiply a matrix with a vector and get the same result when we multiply a scalar by that vector.

we start by Finding eigenvalue. $AV = \lambda V$ AV = AIV V is the non-zero Cigenvector corresponding to the eigenvalue A. AV - AIV = O $|A - \lambda I| v = 0$

Example: Computing eigenvalues and eigenvectors

If
$$A = \begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix}$$
, compute eigenvalues and their
corresponding eigenvector.
Shart with: $|A - \lambda T| = 0 \longrightarrow \text{Finding the determinant.}$
 $\left| \begin{bmatrix} 6 & 3 \\ 4 & 5 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right| = \left| \begin{bmatrix} -6 -\lambda & 3 - 0 \\ 4 - 0 & 5 - \lambda \end{bmatrix} = 0$
 $\left| -6 - \lambda & 3 \\ 4 & 5 - \lambda \end{bmatrix} = 0 = 0$
 $\left| -6 - \lambda & 3 \\ 4 & 5 - \lambda \end{bmatrix} = 0 = 0$
 $\left(-6 - \lambda (5 - \lambda) - (3)(4) = 0 = 0$
 $\left(-30 + 6\lambda - 5\lambda + \lambda^{\gamma} - 12 = 0 = 0$
 $\lambda^{\gamma} + \lambda - 42 = 0$
 $\left(\lambda + T \right) \left(\lambda = 6 \right) = 0$
 $\lambda = -7 \text{ or } 6$.

We found eigenvalues.

Now compute corresponding eigenvectors

If
$$A = \begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix}$$
, compute eigenvalues and their
corresponding eigenvector.
Start with: $|A - \lambda I| = 0 \quad \longrightarrow$ Finding the detorminant.
 $\left| \begin{bmatrix} 6 & 3 \\ 4 & 5 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right| = \left| \begin{bmatrix} -6 - \lambda & 3 - 0 \\ 4 - 0 & 5 - \lambda \end{bmatrix} \right| = 0$
 $\left| -6 - \lambda & 3 \\ 4 & 5 - \lambda \end{bmatrix} = 0 \quad = 0$
 $\left(-6 - \lambda \right) (5 - \lambda) - (3)(4) = 0 \quad = 3$
 $\left(-6 - \lambda \right) (5 - \lambda) - (3)(4) = 0 \quad = 3$
 $-30 + 6\lambda - 5\lambda + \lambda^{\gamma} - 12 = 0 \quad = 4$
 $\lambda^{\gamma} + \lambda - 42 = 0$
 $\left(\lambda + T \right) \left(\lambda = 6 \right) = 0$
 $\lambda = -7 \quad \text{or} \quad 6$.

Case-1: eigenvalue=6

Case 1:
$$\lambda = 6$$
: $AV = \lambda V$

$$\begin{pmatrix} -6 & 3 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} \pi \\ 9 \end{pmatrix} = 6 \begin{pmatrix} \pi \\ 9 \end{pmatrix} \begin{pmatrix} -6\pi + 3y \\ 4x + 5y = 6x \\ 4x + 5y = 6y \end{pmatrix} - 0$$

$$-12x + 3y = 0$$

$$4x - y = 0$$

$$4y$$

$$4x = y \text{ or } y = 4x.$$
So, eigenvector is any non-zero multiple of
$$\begin{bmatrix} 1 \\ 4 \end{bmatrix}.$$

Case-2: eigenvalue=-7

ane-2:
$$\lambda = -7$$
: $AV = \lambda V$
 $\begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = (-7) \begin{bmatrix} x \\ y \end{bmatrix}$
Multiplying these matrices:
 $-6x+3y = -7x$ 0
 $4x + 5y = -7y$
 $x + 3y = 0$ 0 .
 $4x + 12y = 0$
 1
 $x = -3y$ or $y = (-\frac{1}{3})x$
 $\begin{bmatrix} -3 \\ 1 \end{bmatrix} \rightarrow$ Gigenvector is any non-serve multiple of this vector.

Lets case-2's eigenvector and multiply with the original matrix

Replace (anc-2's eigenvector to multiply with the original matrix.

$$\begin{bmatrix}
-6 & 3 \\
-4 & 5
\end{bmatrix}
\begin{bmatrix}
-3 \\
1
\end{bmatrix} =
\begin{bmatrix}
(-6)(-3) + (3)(1) \\
(+)(-3) + (3)(1)
\end{bmatrix}$$

$$=
\begin{bmatrix}
18 + 3 \\
-12 + 5
\end{bmatrix} =
\begin{bmatrix}
21 \\
-7
\end{bmatrix}$$

$$\begin{bmatrix}
21 \\
-7
\end{bmatrix}$$

$$\begin{bmatrix}
1 \\
-7
\end{bmatrix}$$

$$\begin{bmatrix}
-7 \\
-3 \\
1
\end{bmatrix}$$

$$\begin{bmatrix}
(-7) \\
-3 \\
1
\end{bmatrix}$$

$$Gigenvector.$$

Example-2: eigenvalues and eigenvectors

Matrix is:

$$A = \left(\begin{array}{cc} 2 & 2 \\ 5 & -1 \end{array}\right)$$

Principal Component Analysis

- Step-1: Standardization
- Step-2: Compute covariance matrix
- Step-3: Compute the eigenvalues and eigenvectors of the covariance matrix
- Step-4: Sort the eigenvalues in a decreasing order
- Step-5: Choose the top-k eigenvectors which are the principal components – these will be the transformed feature vectors (reorient the data is the common approach)

Regression

Linear Regression

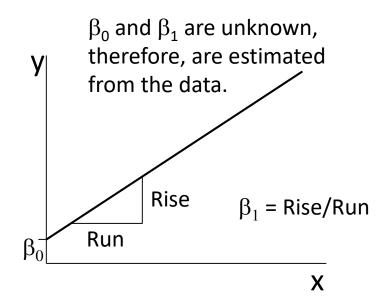
The technique is used to <u>predict</u> the value of one variable (the dependent variable - y) <u>based on</u> the value of other variables (independent variables $x_1, x_2, ..., x_k$) where \mathcal{E} is the error.

$$y = \beta_0 + \beta_1 x + \varepsilon$$

Modeling

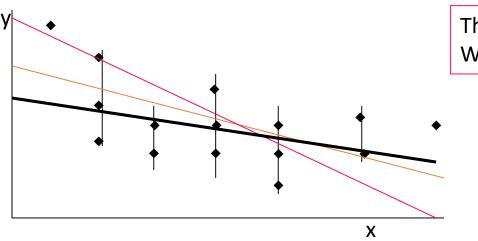
• The first order linear model

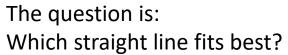
y = dependent variable x = independent variable β_0 = y-intercept β_1 = slope of the line \mathcal{E} = error variable



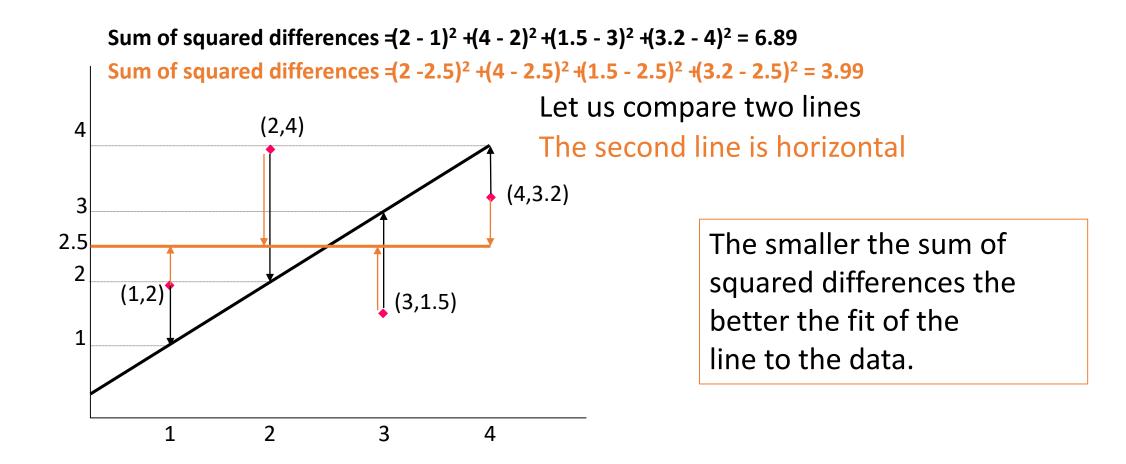
Estimating the coefficients

- The estimates are determined by
 - drawing a sample from the population of interest,
 - calculating sample statistics.
 - producing a straight line that cuts into the data.





The best line is the one that minimizes the sum of squared vertical differences between the points and the line.



Logistic Regression

- Special case of linear regression where the target variable is categorical in nature
- Uses a log of odds as a dependent variable
- Predicts the probability of occurrence of an event using a sigmoid function (inverse of logit function)

$$p = 1/(1 + e^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2)})$$

Linear vs Logistic Regression

- Output for linear regression is continuous
 - For example, stock prices
 - Or real estate price estimation
- Output for logistic regression is estimated as a constant
 - For example, predicting if a sample is tested +ve or -ve
 - Output >0.5 is +ve or 1 or yes; ouput <=0.5 is -ve or 0 or no

Linear vs Logistic Regression

- Linear regression is estimated using ordinary least squares
 - Distance minimizing approximation approach
 - Fits a regression line on a given set of data points that has the minimum sum of squared deviations (least squared error)
- Logistic regression is estimated using maximum likelihood estimation
 - "Likelihood" maximization method
 - Determines parameters (such as mean/variance) that are most likely to produce the set of data points.

Exercises -- Python notebook