Introduction to Machine Learning Applications

Spring 2021

Lecture-12

Lydia Manikonda

manikl@rpi.edu

Today's agenda

- Quiz
- Decision Trees

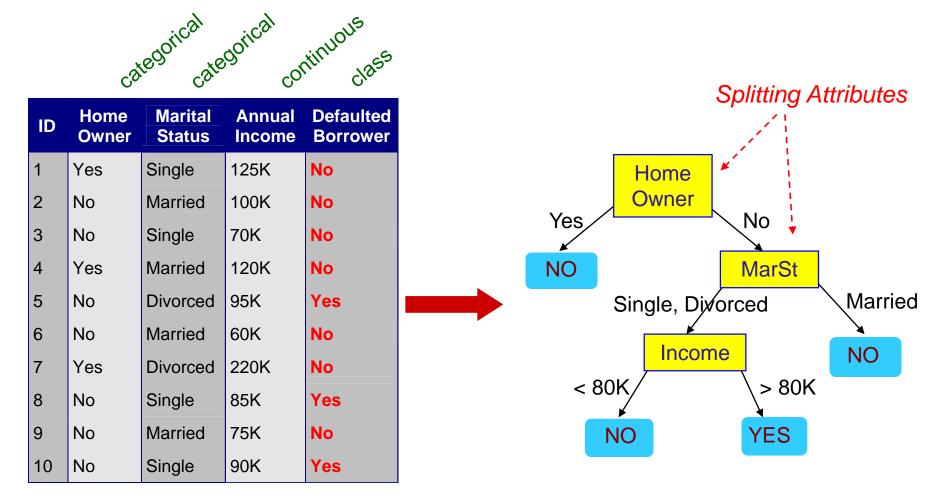
Announcements

• Homework-5 due on March 11th 2021, 11:59 pm ET via LMS

Quiz: https://forms.gle/iJKbkpXdg89N7SwQ9

Decision Trees

Example of a Decision Tree



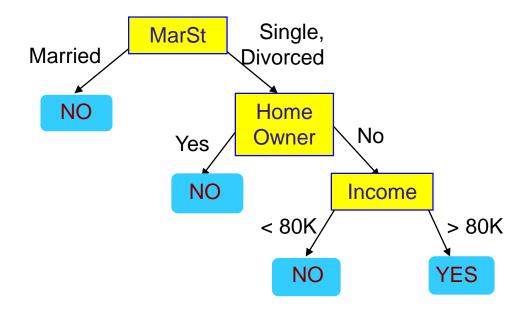
Training Data

Model: Decision Tree

Another Example of Decision Tree

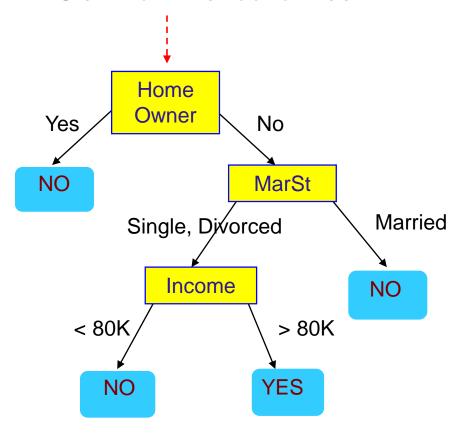
categorical categorical continuous

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single 125K No		No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married 120K No		No
5	No	Divorced 95K Yes		Yes
6	No	Married	Married 60K No	
7	Yes	Divorced	220K	No
8	No	Single 85K Yes		Yes
9	No	Married 75K No		No
10	No	Single	90K	Yes



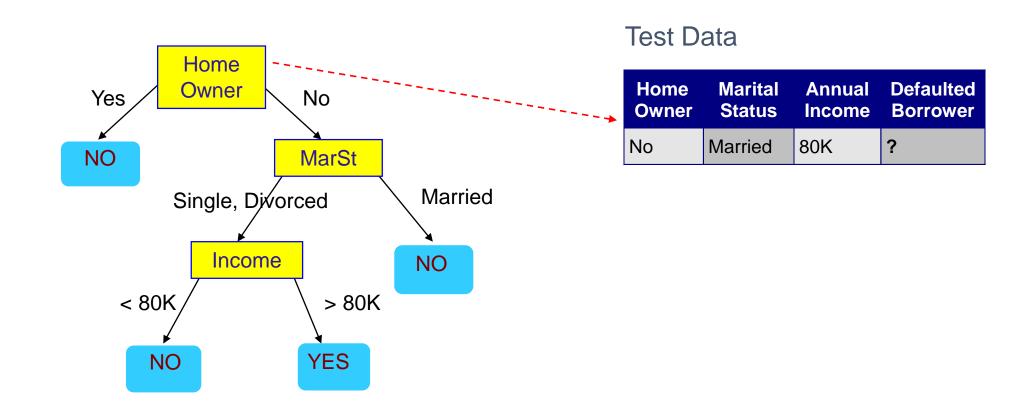
There could be more than one tree that fits the same data!

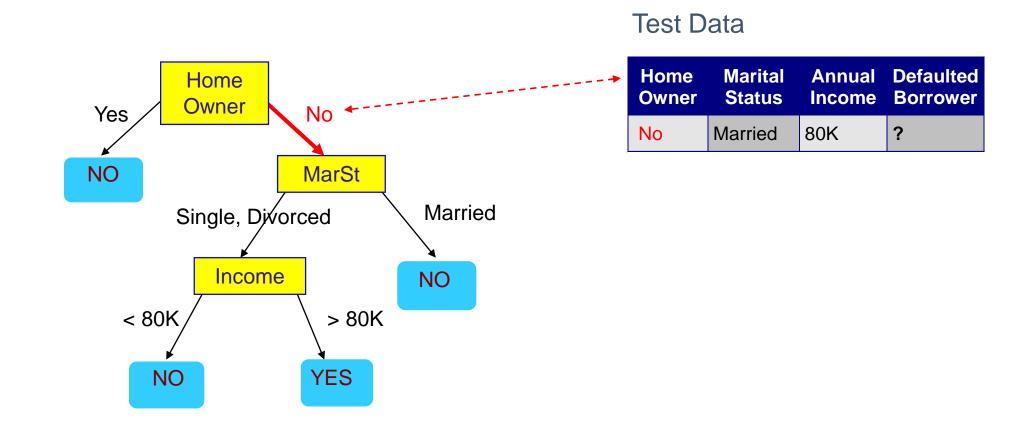
Start from the root of tree.

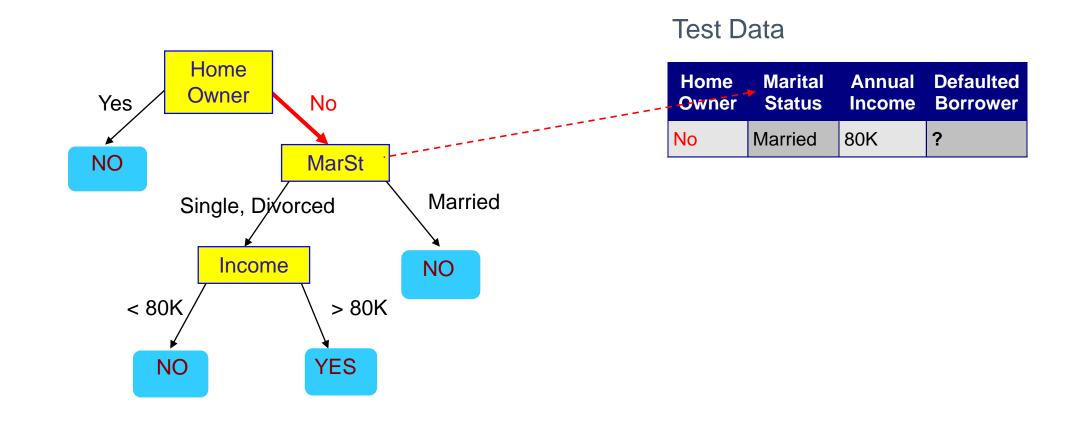


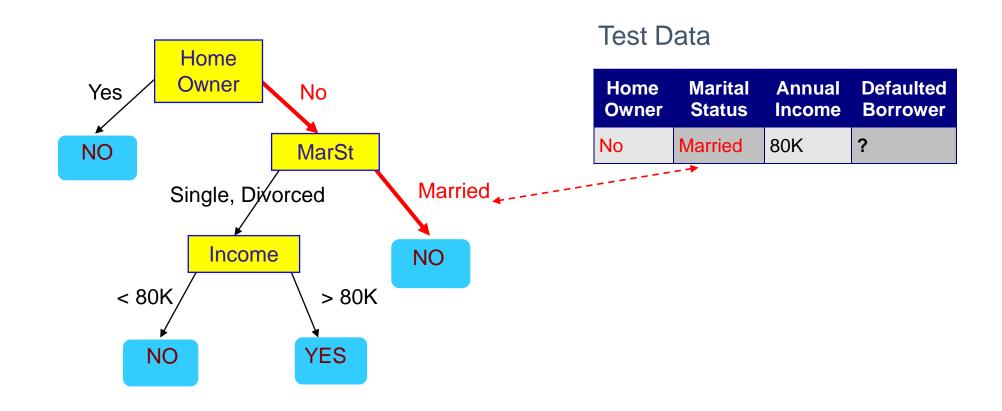
Test Data

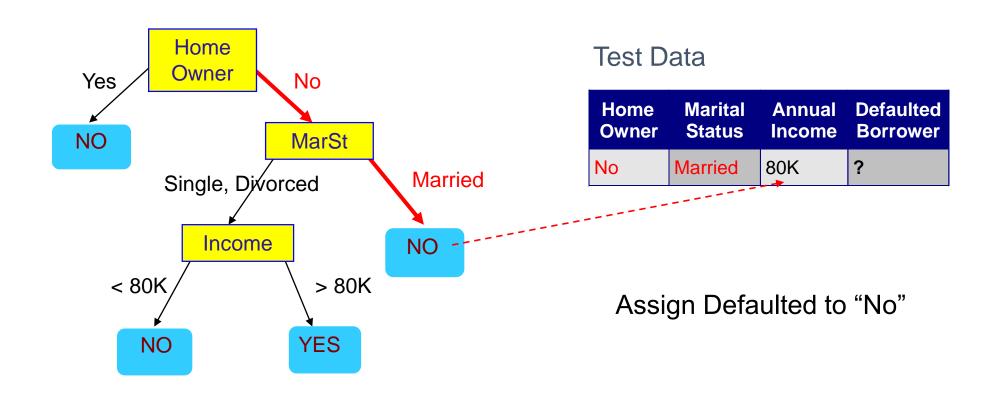
			Defaulted Borrower
No	Married	80K	?



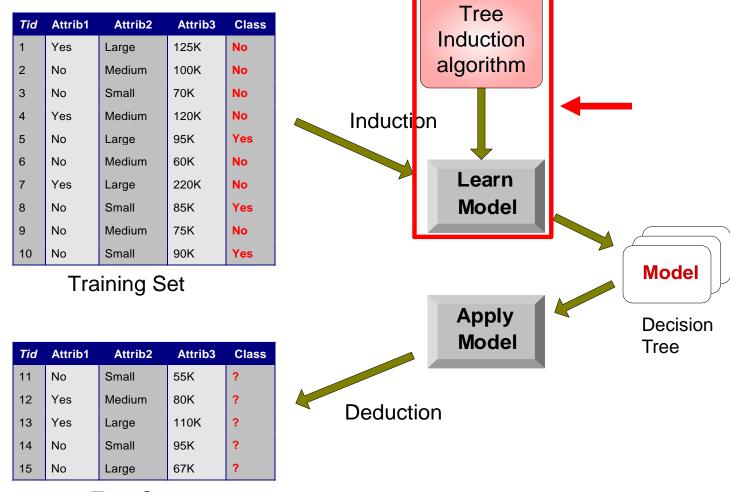








Decision Tree Classification Task



Test Set

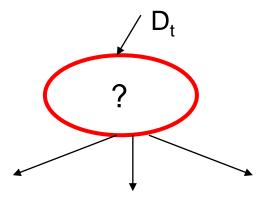
Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ, SPRINT

General Structure of the Hunt's algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets.
 Recursively apply the procedure to each subset.

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

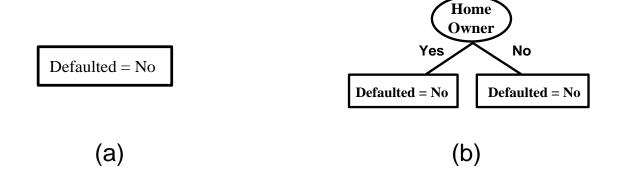


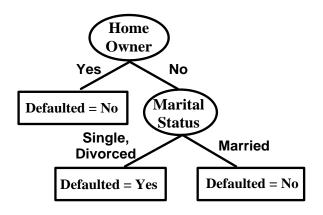
Defaulted = No

(a)

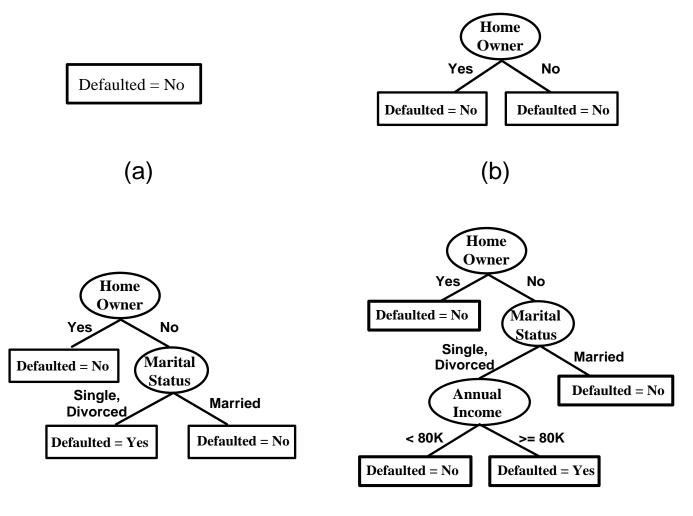
ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	Single 70K	
4	Yes	Married 120K N		No
5	No	Divorced	Divorced 95K	
6	No	Married 60K		No
7	Yes	Divorced 220K No		No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married 60K		No
7	Yes	Divorced 220K No		No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes





ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single 70K No		No
4	Yes	Married 120K No.		No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced 220K No		No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes



ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

(c) (d)

Design Issues of Decision Tree Induction

- How should training records be split?
 - Method for specifying test condition
 - depending on attribute types
 - Measure for evaluating the goodness of a test condition
- How should the splitting procedure stop?
 - Stop splitting if all the records belong to the same class or have identical attribute values
 - Early termination

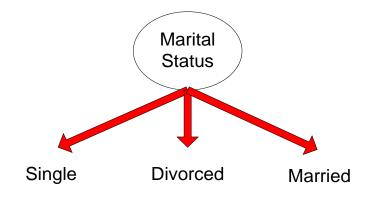
Methods for Expressing Test Conditions

- Depends on attribute types
 - Binary
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Test Condition for Nominal Attributes

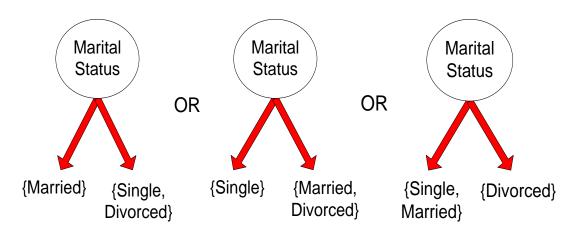
• Multi-way split:

Use as many partitions as distinct values.



Binary split:

Divides values into two subsets



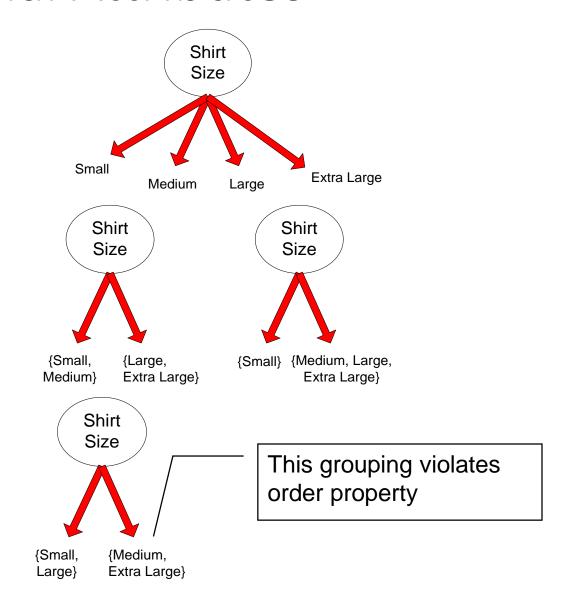
Test Condition for Ordinal Attributes

• Multi-way split:

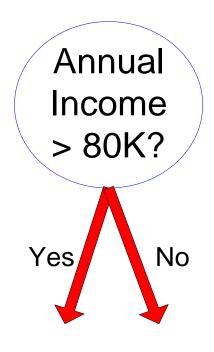
Use as many partitions as distinct values.

Binary split:

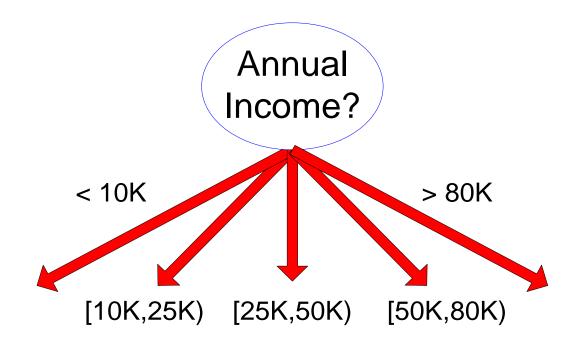
- Divides values into two subsets
- Preserve order property among attribute values



Test Condition for Continuous Attributes



(i) Binary split



(ii) Multi-way split

Splitting Based on Continuous Attributes

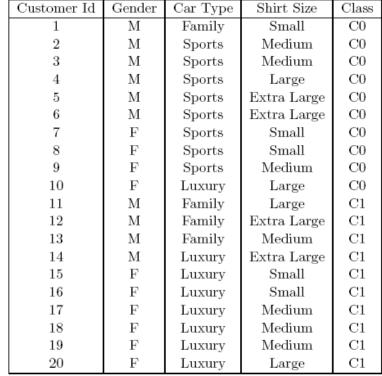
- Different ways of handling
 - Discretization to form an ordinal categorical attribute

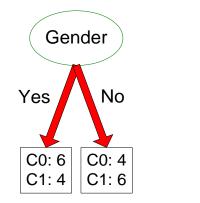
Ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.

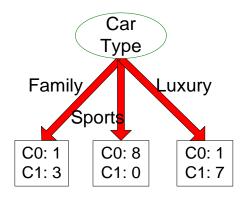
- Static discretize once at the beginning
- Dynamic repeat at each node
- Binary Decision: (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - can be more compute intensive

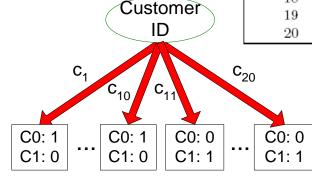
How to determine the best split

Before Splitting: 10 records of class 0, 10 records of class 1









Which test condition is the best?

How to determine the best split

- Greedy approach:
 - Nodes with purer class distribution are preferred
- Need a measure of node impurity:

C0: 5

C1: 5

C0: 9

C1: 1

High degree of impurity

Low degree of impurity

Measures of Node Impurity

Gini Index

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

Entropy

$$Entropy(t) = -\sum_{j} p(j|t) \log p(j|t)$$

Misclassification error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

Finding the best split

- 1. Compute impurity measure (P) before splitting
- 2. Compute impurity measure (M) after splitting
 - 1. Compute impurity measure of each child node
 - 2. M is the weighted impurity of children
- 3. Choose the attribute test condition that produces the highest gain

$$Gain = P - M$$

or equivalently, lowest impurity measure after splitting (M)

Measure of Impurity: Entropy

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j | t) \log p(j | t)$$

- (NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).
- \bullet Maximum (log n_c) when records are equally distributed among all classes implying least information
- Minimum (0.0) when all records belong to one class, implying most information

Entropy based computations are quite similar to the GINI index computations

Computing Entropy of a Single Node

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$$

Computing Information Gain after Splitting

Information Gain

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions; n_i is number of records in partition i

- Choose the split that achieves most reduction (maximizes GAIN)
- Used in ID3 and C4.5 decision tree algorithms

Class exercise

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Example from Han & Kamber Data Mining: Concepts and Techniques

Attribute Selection by Information Gain Computation

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"
- \blacksquare I(p, n) = I(9, 5) = 0.940
- Compute the entropy for *age*:

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3040	4	0	0
>40	3	2	0.971

$E(age) = \frac{5}{14}I(2$	$2,3) + \frac{4}{14}I(4,0)$
$+\frac{5}{14}I(3)$	(3,2) = 0.694

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$\frac{5}{14}I(2,3)$$
 means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's. Hence

$$Gain(age) = I(p,n) - E(age) = 0.246$$

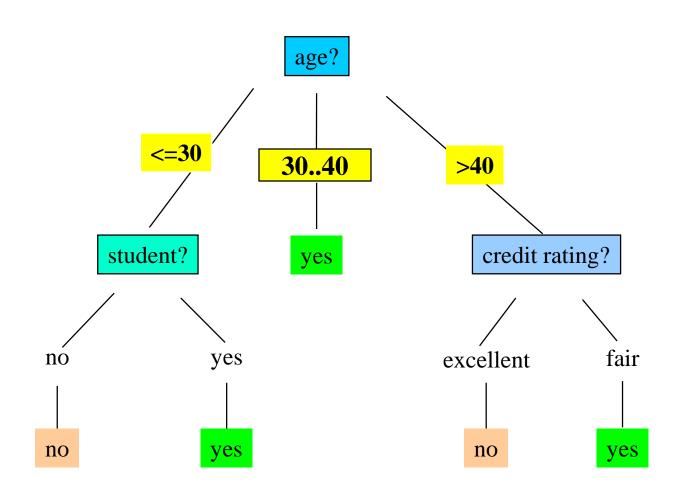
Similarly,

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit_rating) = 0.048$$

Output: A Decision Tree for "buys_computer"



Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

Other Attribute Selection Measures

- Gini index (CART, IBM IntelligentMiner)
 - All attributes are assumed continuous-valued
 - Assume there exist several possible split values for each attribute
 - May need other tools, such as clustering, to get the possible split values
 - Can be modified for categorical attributes

GINI Index (IBM IntelligentMiner)

• If a data set T contains examples from n classes, gini index, gini(T) is defined as $gini(T) = 1 - \sum_{i=1}^{n} p_{j}^{2}$

where p_i is the relative frequency of class j in T.

• If a data set T is split into two subsets T_1 and T_2 with sizes N_1 and N_2 respectively, the *gini* index of the split data contains examples from n classes, the *gini* index *gini*(T) is defined as

$$gini_{split}(T) = \frac{N_1}{N}gini(T_1) + \frac{N_2}{N}gini(T_2)$$

• The attribute provides the smallest $gini_{split}(T)$ is chosen to split the node (need to enumerate all possible splitting points for each attribute).

Exercises – Python notebook