Introduction to Machine Learning Applications Spring 2021

Lecture-13

Lydia Manikonda

manikl@rpi.edu

Today's agenda

- Decision Trees
- Unsupervised Learning Intro

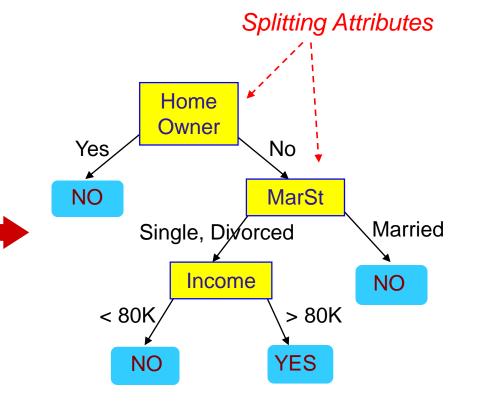
Announcements

- Homework-5 due on March 11th 2021, 11:59 pm ET via LMS
- Midterm:
 - March 25th 2021 12:20 pm to 1:40 pm
 - In-class and please turn your cameras on
 - Open book but <u>NO talking to/messaging classmates</u>
 - Sample test will be released on <u>March 18th 2021</u> and will be discussed during the lecture on <u>March 22nd 2021</u>
 - Topics include everything from the beginning until "Unsupervised Models"
 - Check the syllabus about academic integrity

Decision Trees

Example of a Decision Tree

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

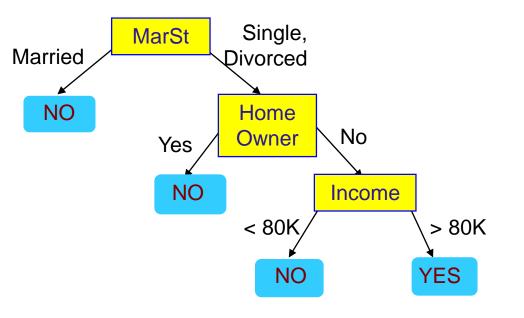


Model: Decision Tree

Training Data

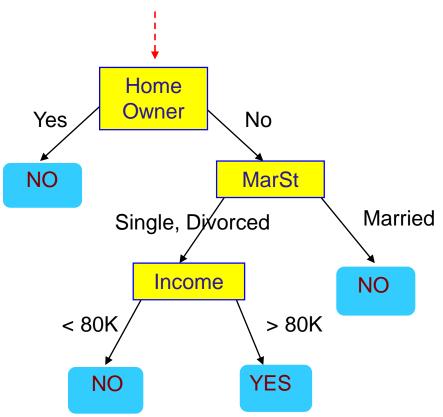
Another Example of Decision Tree

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married 100K		No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced 220K		No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

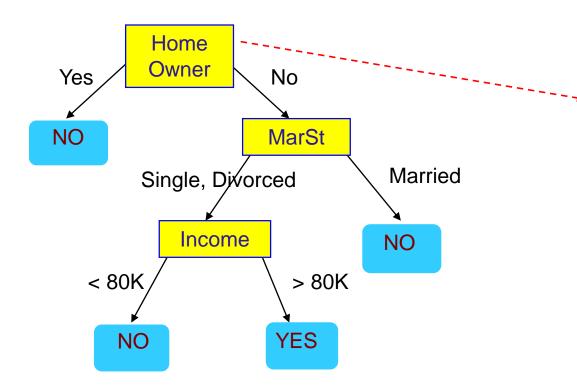


There could be more than one tree that fits the same data!

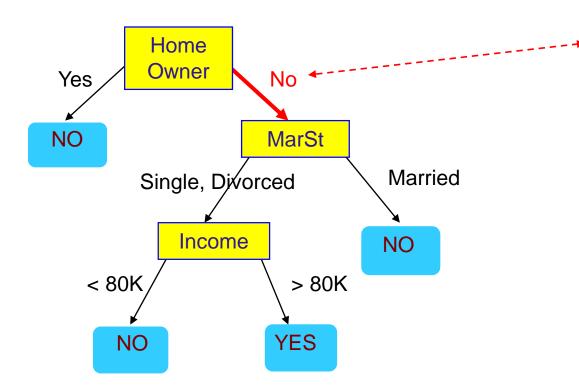
Start from the root of tree.



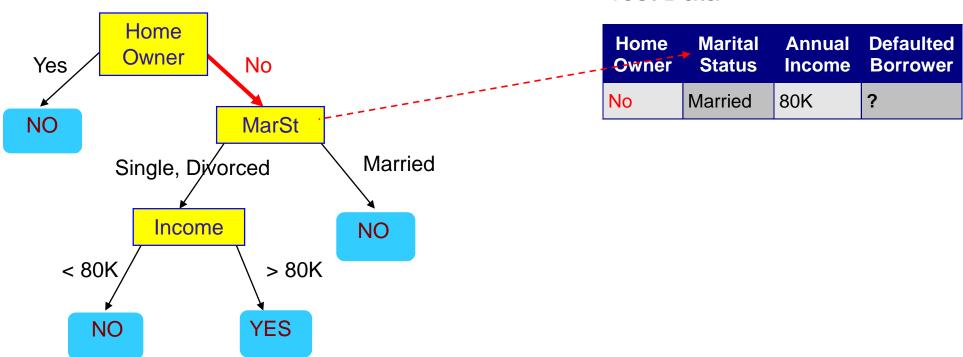
		Annual Defaulted Income Borrower	
No	Married	80K	?

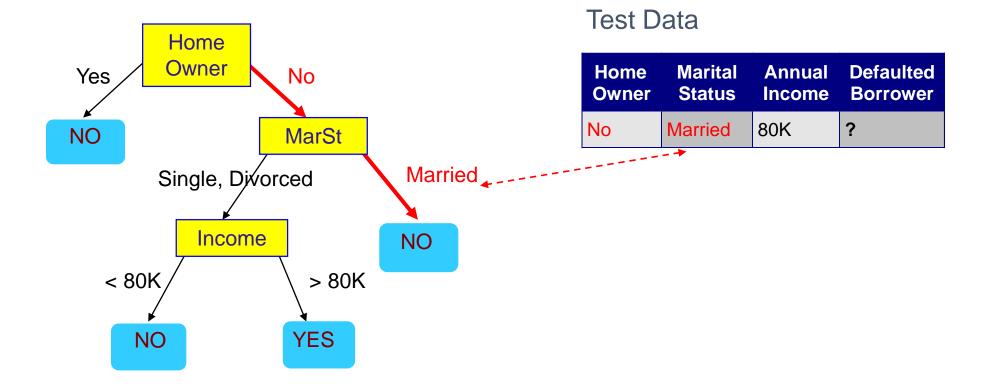


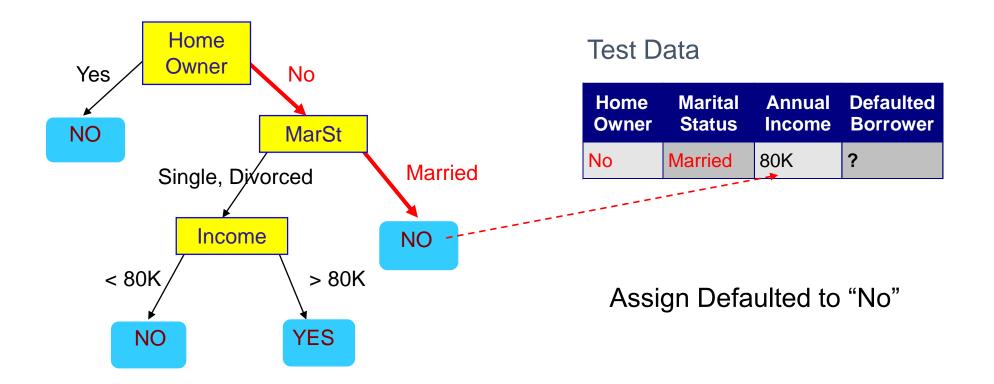
			Defaulted Borrower
No	Married	80K	?



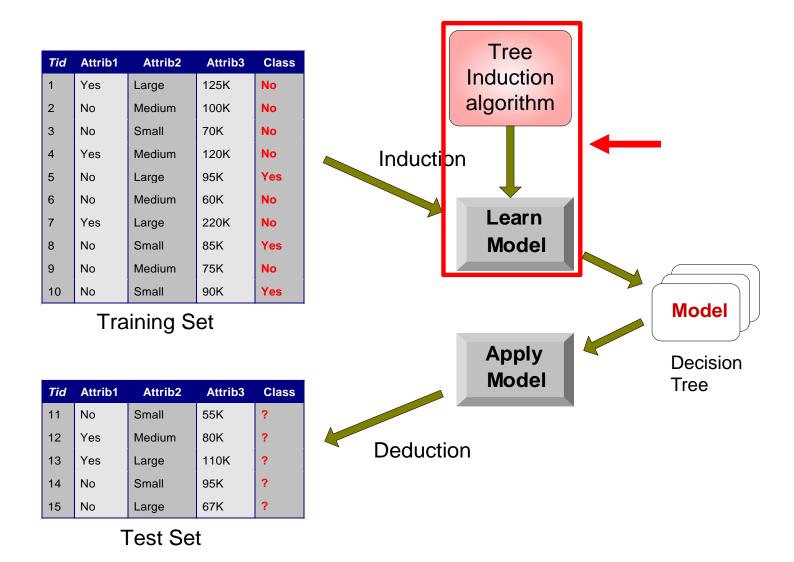
•				Defaulted Borrower
	No	Married	80K	?







Decision Tree Classification Task



Measures of Node Impurity

• Gini Index

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

• Entropy

$$Entropy(t) = -\sum_{j} p(j | t) \log p(j | t)$$

• Misclassification error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

Finding the best split

- 1. Compute impurity measure (P) before splitting
- 2. Compute impurity measure (M) after splitting
 - 1. Compute impurity measure of each child node
 - 2. M is the weighted impurity of children
- 3. Choose the attribute test condition that produces the highest gain

Gain = P - M

or equivalently, lowest impurity measure after splitting (M)

Measure of Impurity: Entropy

• Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j | t) \log p(j | t)$$

- (NOTE: p(j | t) is the relative frequency of class j at node t).
- Maximum (log n_c) when records are equally distributed among all classes implying least information
- Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are quite similar to the GINI index computations

Computing Entropy of a Single Node

$$Entropy(t) = -\sum_{j} p(j | t) \log_{2} p(j | t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Entropy = -0 log 0 - 1 log 1 = -0 - 0 = 0

C1	1
C2	5

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Entropy = - (1/6) $\log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$

C1	2
C2	4

 $P(C1) = 2/6 \qquad P(C2) = 4/6$ Entropy = - (2/6) $\log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$ P(c1)=0.5; p(c2)=0.5

Entropy = $-(1/2)\log(1/2) - (1/2)\log(1/2)$

You have a coin – heads/tails

. Fair coin –

 $P(h) = \frac{1}{2}$ $P(t) = \frac{1}{2}$

Entropy = - (p1* log(p1) + p2*log(p2))
= -(1/2 * log(1/2) +
$$\frac{1}{2}$$
 log(1/2)) = -log(1/2) = log(2)
= 1

Computing Information Gain after Splitting

Information Gain

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions; n_i is number of records in partition i

- Choose the split that achieves most reduction (maximizes GAIN)
- Used in ID3 and C4.5 decision tree algorithms

Class exercise

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Example from Han & Kamber Data Mining: Concepts and Techniques

- First computing the entropy value for the entire dataset:
- P(yes) = 9/14 9 rows with class label 'yes' out of total 14 rows
- P(no) = 5/14
- Entropy = -p(yes)*log(p(yes))-p(no)*log(p(no))
- = -($(9/14)*\log(9/14) + (5/14)*\log(5/14)$)
- = 0.94

Attribute Selection by Information Gain Computation

Class P: buys_computer = "yes"
Class N: buys_computer = "no"
I(p, n) = I(9, 5) =0.940
Compute the entropy for age:

age	pi	n _i	l(p _i , n _i)
<=30	2	3	0.971
3040	4	0	0
>40	3	2	0.971

$$E(age) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 $\frac{5}{14}I(2,3) \text{ means "age <=30" has 5 out of}$ 14 samples, with 2 yes'es and 3

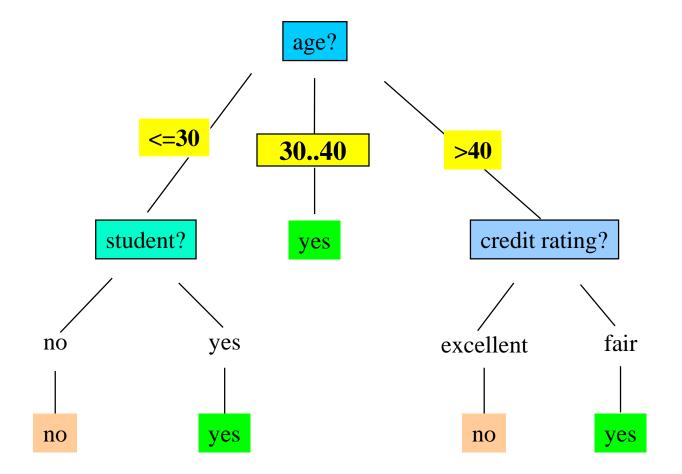
no's. Hence

Gain(age) = I(p, n) - E(age) = 0.246

Similarly,

Gain(income) = 0.029 Gain(student) = 0.151 $Gain(credit_rating) = 0.048$

Output: A Decision Tree for "*buys_computer*"



Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

Other Attribute Selection Measures

- Gini index (CART, IBM IntelligentMiner)
 - All attributes are assumed continuous-valued
 - Assume there exist several possible split values for each attribute
 - May need other tools, such as clustering, to get the possible split values
 - Can be modified for categorical attributes

GINI Index (IBM IntelligentMiner)

• If a data set *T* contains examples from *n* classes, gini index, gini(*T*) is defined as $gini(T) = 1 - \sum_{i=1}^{n} p_{j}^{2}$

where p_i is the relative frequency of class *j* in *T*.

• If a data set *T* is split into two subsets *T*₁ and *T*₂ with sizes *N*₁ and *N*₂ respectively, the *gini* index of the split data contains examples from *n* classes, the *gini* index *gini*(*T*) is defined as

$$gini_{split}(T) = \frac{N_1}{N}gini(T_1) + \frac{N_2}{N}gini(T_2)$$

 The attribute provides the smallest gini_{split}(T) is chosen to split the node (need to enumerate all possible splitting points for each attribute).

Exercises – Python notebook