Introduction to Machine Learning Applications Spring 2021

Lecture-8

Lydia Manikonda

manikl@rpi.edu

Today's agenda

- Manipulating Strings and regular expressions
- Overview of Modeling

Announcements

• Homework-3 due on February 25th 11:59 pm ET via LMS

Python notebook on Regular Expressions

Machine Learning

According to Tom Mitchell (1998):

Machine Learning is the study of algorithms that

- improve their performance P
- at some task T
- with experience E

Well-defined learning task: <P, T, E>

Modeling

What is a model?

- Mathematical representation of a real-world process.
- In other words, description of a system using mathematical concepts.
- Three different types of models can be built:
 - Supervised learning
 - Unsupervised learning
 - Semi-supervised learning

Definition of Classification

Given a collection of records (training set)

– Each record is by characterized by a tuple (x,y), where x is the attribute set and y is the class label

x: attribute, predictor, independent variable, input

y: class, response, dependent variable, output

Task:

– Learn a model that maps each attribute set \boldsymbol{x} into one of the predefined class labels \boldsymbol{y}

Example -- Classification tasks

Task	Attribute set, <i>x</i>	Class label, y
Categorizing email messages	Features extracted from email message header and content	spam or non-spam
Identifying tumor cells	Features extracted from MRI scans	malignant or benign cells
Cataloging galaxies	Features extracted from telescope images	Elliptical, spiral, or irregular-shaped galaxies

Classification model

Test Set

Classification Techniques

- Base Classifiers
 - Decision Tree based Methods
 - Rule-based Methods
 - Nearest-neighbor
 - Neural Networks
 - Deep Learning
 - Naïve Bayes and Bayesian Belief Networks
 - Support Vector Machines
- Ensemble Classifiers
 - Boosting, Bagging, Random Forests

Regression Algorithms

- Modeling the relationship between variables that are iteratively refined using a measure of error.
- Most popular regression algorithms are:
 - Ordinary least squares regression
 - Linear regression
 - Logistic regression
 - Multivariate adaptive regression splines

Regression Algorithms

•

Instance-based algorithms

- This model is a decision problem with instances of training data that are deemed important or required to the model.
- Focus is put on the representation of the stored instances and similarity measures used between instances.
- Most popular instance-based algorithms are:
 - K-Nearest Neighbor (KNN)
 - Support Vector Machines (SVM)
 - Learning Vector Quantization
 - Self-Organizing Maps

•

Instance-based Algorithms

Decision Tree-based algorithms

- These methods construct a model of decisions based on the actual values of attributes in the data.
- These decisions built are in the form of a tree.
- Most popular algorithms are:
 - Classification and Regression Tree
 - Conditional Decision Trees
 - ID3
 - C4.5 and C5.0
 - ...

Decision Tree Algorithms

Bayesian Algorithms

- Bayesian methods explicitly apply the Bayes Theorem for problems such as classification and regression.
- Bayes Theorem
- Most popular algorithms are:
 - Naïve Bayes
 - Gaussian Naïve bayes
 - Bayesian network
 - Bayesian belief network
 - ...

Bayesian Algorithms

Clustering Algorithms

- These algorithms utilize the inherent structures in the data to organize them into various groups.
- Main goal is to find clusters that have high intra similarity and high inter similarity distances.
- Most popular clustering algorithms are:
 - K-Means

•

- K-Medoids
- Expectation Maximization
- Hierarchical Clustering

Clustering Algorithms

Association Rule Learning Algorithms

- These methods extract rules that best explain the observed relationships between variables in the data
- Most popular algorithms are:
 - Apriori
 - Eclat
 - FP-growth
 - ...

Association Rule Learning Algorithms

Artificial Neural Network Algorithms

- Models that are inspired by the structure and function of biological neural networks.
- Most popular algorithms are:
 - Perceptron
 - Multilayer perceptron
 - Backpropagation
 - ...

Artificial Neural Network Algorithms

Deep Learning Algorithms

- Update to Artificial Neural Networks
- Main goal is to build a much larger and more complex neural networks.
- Most popular algorithms are:
 - Convolutional Neural Network (CNN)
 - Recurrent Neural Networks (RNNs)
 - Long Short-Term Memory Networks (LSTMs)
 - Deep Belief Networks (DBN)

Deep Learning Algorithms

Ensemble Algorithms

- These are the models composed of multiple weaker models that are independently trained and the predictions are combined to make the overall prediction.
- Some of the popular algorithms are:
 - Boosting
 - Boostrapped Aggregation
 - AdaBoost

•

- Gradient Boosting Machines
- Random Forest

Ensemble Algorithms

How can we measure the quality of this model?

k-fold Cross-validation

- Resampling procedure to evaluate machine learning models on a given data sample.
- The parameter k refers to the number of groups that a given data sample is to be split into.
- If k=10, it is 10-fold cross-validation where the sample data is divided into 10 groups.

k-fold Cross-validation

- > Shuffle the dataset (better)
- > Split the dataset into *k* disjoint groups
- > For each unique group:
 - > Take the group as a hold out or test (validation) data set
 - > Take the remaining groups as a training data set
 - > Fit a model on the training set and evaluate it on the test set
 - > Record the evaluation score
- > Find the mean of all the sample of model evaluation scores

k-fold Cross-validation

Model1: Trained on Fold2 + Fold3, Tested on Fold1 Model2: Trained on Fold1 + Fold3, Tested on Fold2 Model3: Trained on Fold1 + Fold2, Tested on Fold3

Model Overfitting & Underfitting

Underfitting: when model is too simple, both training and test errors are large **Overfitting**: when model is too complex, training error is small but test error is large