Introduction to Machine Learning Applications Spring 2021

Lecture-9

Lydia Manikonda

manikl@rpi.edu

Today's agenda

- Overview of Modeling
- Accuracy metrics

Announcements

• Homework-3 due tonight 11:59 pm ET via LMS

Modeling

What is a model?

- Mathematical representation of a real-world process.
- In other words, description of a system using mathematical concepts.
- Three different types of models can be built:
 - Supervised learning
 - Unsupervised learning
 - Semi-supervised learning

Definition of Classification

Given a collection of records (training set)

– Each record is by characterized by a tuple (x,y), where x is the attribute set and y is the class label

x: attribute, predictor, independent variable, input

y: class, response, dependent variable, output

Task:

– Learn a model that maps each attribute set \boldsymbol{x} into one of the predefined class labels \boldsymbol{y}

Example -- Classification tasks

Task	Attribute set, <i>x</i>	Class label, y
Categorizing email messages	Features extracted from email message header and content	spam or non-spam
Identifying tumor cells	Features extracted from MRI scans	malignant or benign cells
Cataloging galaxies	Features extracted from telescope images	Elliptical, spiral, or irregular-shaped galaxies

Classification model

Test Set

A standard learning pipeline

Classification Techniques

- Base Classifiers
 - Decision Tree based Methods
 - Rule-based Methods
 - Nearest-neighbor
 - Neural Networks
 - Deep Learning
 - Naïve Bayes and Bayesian Belief Networks
 - Support Vector Machines
- Ensemble Classifiers
 - Boosting, Bagging, Random Forests

Regression Algorithms

- Modeling the relationship between variables that are iteratively refined using a measure of error.
- Most popular regression algorithms are:
 - Ordinary least squares regression
 - Linear regression
 - Logistic regression
 - Multivariate adaptive regression splines

Regression Algorithms

•

Instance-based algorithms

- This model is a decision problem with instances of training data that are deemed important or required to the model.
- Focus is put on the representation of the stored instances and similarity measures used between instances.
- Most popular instance-based algorithms are:
 - K-Nearest Neighbor (KNN)
 - Support Vector Machines (SVM)
 - Learning Vector Quantization
 - Self-Organizing Maps

•

Instance-based Algorithms

Decision Tree-based algorithms

- These methods construct a model of decisions based on the actual values of attributes in the data.
- These decisions built are in the form of a tree.
- Most popular algorithms are:
 - Classification and Regression Tree
 - Conditional Decision Trees
 - ID3
 - C4.5 and C5.0
 - ...

Decision Tree Algorithms

Bayesian Algorithms

- Bayesian methods explicitly apply the Bayes Theorem for problems such as classification and regression.
- Bayes Theorem
- Most popular algorithms are:
 - Naïve Bayes
 - Gaussian Naïve bayes
 - Bayesian network
 - Bayesian belief network
 - ...

Bayesian Algorithms

Clustering Algorithms

- These algorithms utilize the inherent structures in the data to organize them into various groups.
- Main goal is to find clusters that have high intra similarity and high inter similarity distances.
- Most popular clustering algorithms are:
 - K-Means

•

- K-Medoids
- Expectation Maximization
- Hierarchical Clustering

Clustering Algorithms

Association Rule Learning Algorithms

- These methods extract rules that best explain the observed relationships between variables in the data
- Most popular algorithms are:
 - Apriori
 - Eclat
 - FP-growth
 - ...

Association Rule Learning Algorithms

Artificial Neural Network Algorithms

- Models that are inspired by the structure and function of biological neural networks.
- Most popular algorithms are:
 - Perceptron
 - Multilayer perceptron
 - Backpropagation
 - ...

Artificial Neural Network Algorithms

Deep Learning Algorithms

- Update to Artificial Neural Networks
- Main goal is to build a much larger and more complex neural networks.
- Most popular algorithms are:
 - Convolutional Neural Network (CNN)
 - Recurrent Neural Networks (RNNs)
 - Long Short-Term Memory Networks (LSTMs)
 - Deep Belief Networks (DBN)

Deep Learning Algorithms

Ensemble Algorithms

- These are the models composed of multiple weaker models that are independently trained and the predictions are combined to make the overall prediction.
- Some of the popular algorithms are:
 - Boosting
 - Boostrapped Aggregation
 - AdaBoost

•

- Gradient Boosting Machines
- Random Forest

Ensemble Algorithms

How can we measure the quality of an ML model?

Confusion Matrix

- A table that is often used to describe the performance of a classification model on a set of test data.
- This allows the visualization of the algorithm's performance.

		Actual Class		
		Class = 1	Class = 0	
Predicted Class	Class = 1	f_{11}	<i>f</i> ₁₀	
	Class = 0	f_{01}	f_{00}	

		Actual Class		
		Class = 1	Class = 0	
Predicted Class	Class = 1	f_{11}	<i>f</i> ₁₀	
	Class = 0	f_{01}	f_{00}	

- f_{11} True Positive
- f_{10} False Positive Type I error
- f_{01} False Negative Type II error
- f_{00} True Negative

		Actual Class	
		Class = 1	Class = 0
Predicted Class	Class = 1	f_{11}	<i>f</i> ₁₀
	Class = 0	f_{01}	f_{00}

- f_{11} True Positive
- f_{10} False Positive Type I error f_{01} False Negative Type II error
- f_{00} True Negative

$$Accuracy = \frac{(f_{11} + f_{00})}{(f_{11} + f_{10} + f_{01} + f_{00})}$$

		Actual Class		
		Class = 1	Class = 0	
Predicted Class	Class = 1	10	5	
	Class = 0	5	10	

Compute the value of Accuracy?

How many are truly labeled = 10+10Total data points that you have: 10+10+5+5 = 30Accuracy = 20/30 = 2/3 = 66.67

		Actual Class	
		Class = 1	Class = 0
Predicted Class	Class = 1	f_{11}	<i>f</i> ₁₀
	Class = 0	f_{01}	f_{00}

- f_{11} True Positive
- f_{10} False Positive Type I error
- f_{01}^{-1} False Negative Type II error
- f_{00}^{-} True Negative

Precision: How many selected

items are relevant?

Recall: How many relevant items are selected?

selected elements

Credits: https://en.wikipedia.org/wiki/Precision_and_recall

How many selected items are relevant?

 $Precision = \frac{|\{relevant \ documents\} \cap \{retrieved \ documents\}|}{|\{retrieved \ documents\}|}$

$$Precision = \frac{f_{11}}{(f_{10} + f_{11})}$$

Recall

How many relevant items are selected?

 $Recall = \frac{|\{relevant \ documents\} \cap \{retrieved \ documents\}|}{|\{relevant \ documents\}|}$

$$Recall = \frac{f_{11}}{(f_{01} + f_{11})}$$

Better measure that considers the harmonic mean of *precision* and *recall*

$$f - measure = \frac{2*(precision*recall)}{(precision+recall)}$$

$$f1score = \frac{2*precision*recall}{(precision+recall)}$$

Compute precision, recall and f-measure

tp = 8 fp = 4 fn = 2 tn = 6

		Actual Class	
		True	False
Predicted class	True	8	4
	False	2	6

Precision = tp/(tp+fp) = 8/(8+4) = 8/12Recall = 8/(8+2) = 8/10F-score = (2*precision*recall)/(precision+recall) = (2*8*8/120)/(8/10 + 8/12) =

Sensitivity

Also considered as the True positive rate or equivalent to recall

 $Sensitivity = \frac{|\{relevant \ documents\} \cap \{retrieved \ documents\}|}{|\{relevant \ documents\}|}$

Specificity

Also known as True Negative Rate (actual negatives that are correctly identified)

 $Specificity = \frac{True \ Negative}{(True \ Negative + False \ Positive)}$

Specificity =
$$\frac{f_{00}}{(f_{00} + f_{10})}$$

- Receiver operating characteristic curve
- Created by plotting True-positive rate vs False positive rate

 $FalsePositiveRate = \frac{FalsePositive}{(TrueNegative+FalsePositive)}$

 $TruePositiveRate = \frac{TruePositive}{(FalseNegative+TruePositive)}$

ROC curve – Example

https://upload.wikimedia.org/wikipedia/commons/6/6b/Roccurves.png

Class Exercises

			Actual Class	
			Cat (true)	~Cat (false)
	Predicted Class	Cat (true)	5	2
		~Cat (false)	3	3
 Compute Accuracy Precision, Recall, f-measure, Specificity False positive reduction 	Accuracy = (5+3)/13 Pr Re	ecision = $(5/5-$	+2)
	Fp = 2 Fn = 3 atetn = 3	F- 2*	measure = *p*r/(p+r)	

$$A(curacy = \frac{TP + TN}{\#Tohal} = \frac{S + 3}{S + 2 + 3 + 3} = \frac{8}{13}$$

$$Precision = \frac{TP}{TP + FP} = \frac{5}{S + 2} = \frac{5}{7} = 71.42\%$$

$$Recall = \frac{TP}{TP + FN} = \frac{5}{S + 3} = \frac{5}{8} = 62.5\%$$

$$FScore = \frac{2 \times Pre \times Rec}{(Pre + Rec)} = \frac{2 \times \frac{5}{7} \times \frac{5}{8}}{(\frac{5}{7} + \frac{5}{8})} = \frac{2}{(\frac{5}{7} + \frac{5}{8})} = \frac{2}{\sqrt{8}} \times \frac{5-6-2}{\sqrt{8} \times 15-3} = \frac{2}{3} = 66.7\%$$

$$Specificitly = \frac{TN}{TN + FP} = \frac{3}{3 + 2} = \frac{3}{5} = 60\%$$

$$FPR = \frac{FP}{FP + TN} = \frac{2}{2 + 3} = \frac{2}{5} = 40\%$$

k-fold Cross-validation

- Resampling procedure to evaluate machine learning models on a given data sample.
- The parameter k refers to the number of groups that a given data sample is to be split into.
- If k=10, it is 10-fold cross-validation where the sample data is divided into 10 groups.

k-fold Cross-validation

- > Shuffle the dataset (better)
- > Split the dataset into *k* disjoint groups
- > For each unique group:
 - > Take the group as a hold out or test (validation) data set
 - > Take the remaining groups as a training data set
 - > Fit a model on the training set and evaluate it on the test set
 - > Record the evaluation score
- > Find the mean of all the sample of model evaluation scores

k-fold Cross-validation

Model1: Trained on Fold2 + Fold3, Tested on Fold1 Model2: Trained on Fold1 + Fold3, Tested on Fold2 Model3: Trained on Fold1 + Fold2, Tested on Fold3

Example

- Given a set of data points {a, b, c, d, e, f, g, h}
 - Perform 4-fold cross validation
 - Explain it in your own terms what are the folds and how do you use them?

Model Overfitting & Underfitting

Underfitting: when model is too simple, both training and test errors are large **Overfitting**: when model is too complex, training error is small but test error is large

How do we convert ground truth data and predictions to a confusion matrix?

• Notebook example

• Exercises in the notebook to follow..